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ABSTRACT: We present a rapid method to quantify phenolic compounds all during the red winemaking process using Fourier
transform mid-infrared (FT-MIR) spectroscopy and chemometrics. To get the reference values, we used the usual UV�vis
spectroscopy methods, and the compounds studied were evaluated as total phenolic compounds (TPC), total anthocyanins (TA),
and condensed tannins (CT). Sampling from five different grape varieties (Merlot, Tempranillo, Syrah, Cari~nena, and Cabernet
sauvignon), harvested at different ripening states, and monitored over 10 days of vinification produced a total of 600 spectra. These
were used to build and validate four different predictive models by partial least-squares (PLS) regression. The spectral regions
selected for each model were between 979 and 2989 cm�1, and when selecting the most suitable one in each case, good values of
performance parameters were obtained (R2val > 0.95 and RPD> 4.0 for TPC;R2val > 0.90 and RPD> 3.0 for TA;R2val < 0.8 and RPD
< 3.0 for CT). Furthermore, also more specific PLS regression models for each phenolic parameter and each grape variety were
developed using different regions with results similar to those obtained when dealing with all of the grape varieties. It is concluded
that FT-MIR spectroscopy together with multivariate calibration could be a rapid and valuable tool for wineries to carry out the
monitoring of phenolic compound extraction during winemaking.

KEYWORDS: FT-MIR spectroscopy, PLS regression, phenolic compounds, anthocyanins, condensed tannins, vinification,
maceration

’ INTRODUCTION

Phenolic compounds play an important role in the organo-
leptic properties of red wines and also in the aptitude of the wine
to age. Among the different phenolic compounds in red wines,
the twomost important parameters from the oenological point of
view are the total anthocyanins and the condensed tannins. Thus,
whereas the anthocyanins are responsible for the wine color and
are located in grape skins, the condensed tannins are present in
skins and seeds and are related to astringency,1 although it has to
be taken into account that tannins are also involved in the
development and stabilization of wine color during its aging.2

The concentration of the phenolic compounds in grapes is
affected by many factors including grape variety,3 state of grape
ripening,4 climatic and soil conditions (terroir),5,6 and viticulture
techniques.7 The transference of phenolic compounds from
grapes to wines not only depends on the raw material (variety
and ripening state) but also on the winemaking strategies, depend-
ing on many factors, such as fermentation temperature, skin to
juice ratio, maceration time, and enzyme additions.8,9

During red winemaking, the phenolic extraction from the
skins starts quickly and soon becomes stable, while extraction
from the seeds starts later and increases gradually, when the
ethanol present in the medium dissolves the waxy layer that coats
the seeds and promotes the polyphenol solubilization. Indeed,
the phenolic content of grapes is mainly extracted throughout the
first 10 days of maceration,10 and when skin-contact maceration
is extended over this period of time, the wine color does not
increase significantly, but it becomes more stable.11 Thus, when
producing a young wine, short macerations are preferred to avoid
too astringent wines,12 but for aged wines, long macerations are
required to have enough phenolic compound amounts to ensure

color stabilization during aging.13 Therefore, monitoring the
polyphenol content in grapes is essential to determine the wine
aging ability.

The most usual analytical methods for quantifying phenolic
compounds in musts/wines are based on colorimetric measure-
ments of the diluted samples, at 520 nm for anthocyanins and at
280 nm for total phenolic compounds and condensed tannins.1,14,15

These methods are generally used in wineries because they are
simple and precise enough, but they are time-consuming and
expensive when many samples must be analyzed, e.g., for process
control.

To solve these problems, we propose a rapid method that
combines the Fourier transform mid infrared (FT-MIR) spec-
troscopy and partial least squares (PLS) regression. FT-MIR
spectroscopy is a powerful analytical tool that allows fast and
simultaneous analysis of several parameters in a large number of
samples. Moreover, it implies a minimal sample preparation,16

being possible to know, at real time, the phenolic content all during
winemaking.

However, because of the great amount of information that
each FT-MIR spectrum provides, it is necessary to use chemo-
metric tools to extract quality information, both for qualitative
and for quantitative analyses. PLS regression is a multivariate
calibration method, which is particularly useful when we need
to predict a set of dependent variables (i.e., concentrations)
from a large set of independent variables (i.e., spectra). FT-MIR

Received: May 18, 2011
Accepted: September 12, 2011
Revised: September 8, 2011



10796 dx.doi.org/10.1021/jf201973e |J. Agric. Food Chem. 2011, 59, 10795–10802

Journal of Agricultural and Food Chemistry ARTICLE

spectroscopy is an attractive technology for the food and beverage
industry because of its simple, rapid, and nondestructive mea-
surements.16 It has been applied for routine qualitative analysis
and process control in wineries, enabling immediate analysis of
raw materials,17 fermentation monitoring,18,19 or determination
of some of the main compounds in wine such as ethanol, organic
acids, or sugars.20�22 It has also been applied to the quantification of
phenolic compounds in white23 and red wines.24�27 Related to
the monitoring of the extraction of phenolic compounds during
winemaking, although there are few studies carried out by using
NIR spectroscopy,28,29 up to now, there is only a previous study
where FT-MIR has been used for this purpose, but its authors
only considered one grape variety, and the sampling was not
suitably performed to ensure representativeness.29

The objective of the present article was the application of
FT-MIR, combined with PLS regression, for quantifying the
concentration of phenolic compounds (evaluated as total phe-
nolic compounds, total anthocyanins, and condensed tannins) in
the skin-contact macerations during winemaking.

It was necessary to take into account that the grape variety and
ripening stage determine the phenolic content solubilization in
the macerated grapes. Thus, to develop robust multivariate models,
we chose the samples of the calibration set considering this natural
variability by taking five red grape varieties at different stages of
ripening. Moreover, the progressive change of sample matrix
during maceration due to winemaking further increased the robust-
ness of the models.

The data set reference values were obtained by common
UV�vis spectroscopic methods used in cellars: absorbance at
520 nm for total anthocyanins and 280 nm for total phenolic
compounds and condensed tannins (after precipitation by methyl-
cellulose).

’MATERIALS AND METHODS

Samples. Grapes from five red cultivars (Tempranillo, Merlot, Syrah,
Cari~nena, and Cabernet sauvignon) were obtained from the experi-
mental vineyard, Mas dels Frares, belonging to the Faculty of Enology
(Rovira i Virgili University) in Constantí (Tarragona, Spain) during the
2009 vintage. Every sampling consisted of several clusters, carefully collected
as follows: Vines that combine sun and shadow were randomly selected
and marked. For each grape variety, one cluster from each marked vine
was collected and transported to the laboratory in a 20 kg box for
winemaking. The sampling also considered the complete biological cycle
of each variety, so it was done weekly for each variety, from the beginning
of ripeness until vintage. Thus, the number of samplings was 20: 5
Merlot, 4 Syrah, 4 Tempranillo, 4 Cabernet sauvignon, and 3 Cari~nena.
Microvinifications. We proceeded with three individual microvini-

fications for each variety and ripening stage (i.e., 60 microvinifications).
Thus, the grapes of each sampling were manually destemmed and

crushed with a manual crusher fitted with stainless steel rollers. Then,
4 kg of crushed grapes were introduced into plastic containers of 6 L, and
0.48 g of K2S2O5 (0.12 g/kg) was added. The alcoholic fermentation was
carried out by selected yeasts (AWRI 596), which were inoculated
(0.20 g per kg of crushed grape) on the same day of harvest. Fermenta-
tion activators were first added 24 h after yeast inoculation (Actiferm 1)
and also when the density reached values of 1040�1050 g L�1 (Actiferm 2).
Must/wine density and temperature were daily measured. Must tempera-
ture during fermentation was controlled by keeping the plastic containers
in a thermo-controlled room in order to prevent the temperature from
exceeding 30 �C.

The alcoholic fermentation finished between the fifth and the seventh
day, but the skin-contact maceration was extended until the 10th day.

During both periods (fermentation and maceration), the cap of each
microvinification was punched down once a day, and after this action, an
aliquot of 20 mL was taken to be analyzed.
Reagents and Standards. The standards of malvidin-3-glucoside

(purity g90%) and (+)-catechin (purity g96%) were purchased from
Fluka (Madrid, Spain). Methyl cellulose (M-0387) was supplied by
Sigma Aldrich (Madrid, Spain). Gallic acid monohydrate (99.5%) and
the rest of chemicals used for the study were of analytical-reagent grade
and provided by Scharlab (Barcelona, Spain).

Selected yeasts (AWRI 596) were purchased from Agrovin (Ciudad
Real, Spain). The fermentation activators (Actiferm 1 and 2) and the
potassium bisulphite (purity g95%) were supplied by Martin Vialatte
Oenologie (Epernay, France).
Instrumentation. Centrifugation of must and wine samples was

carried out with a Hettich Universal 32 R centrifuge (Tuttlingen,
Germany). The absorbance was measured using a Thermo Spectronic
UV�vis spectrophotometer Model Helios γ (Thermo Electron Cor-
poration, Cambridge, UK). All spectra of the musts/wines were collected
using a FT-MIR 470 Nexus (Thermo Nicolet, USA), equipped with a
Globar IR source, a KBr beam splitter, a ZnSe liquid transmission flow
cell of 0.025mm of path length (0.004mL of liquid sample volume), and
a Deuterate Triglycine Sulfate detector (DTGS). The instrument was
connected to a TDI Bacchus (Gav�a, Barcelona, Spain) autosampler with
an online and automatic system of sample filtration (stainless steel filter
of food-grade with a porous size of 50 μm, Teflon coated), which pumped a
volumeof 10mLof each individual sample to the cell for spectra acquisition.
The software package OMNIC, version 6.2, from Thermo Nicolet
was used for spectra acquisition. The software used for data analysis
and calibration was the Unscrambler package (version 9.0, CAMOASA,
Norway).
Midinfrared Scanning. Prior to MIR scanning, musts and wines

were centrifugated at 8000 rpm for 10 min. All spectra were averaged
from 32 scans (each spectrum acquisition takes only 30 s per sample)
and collected in absorbancemode, at 4 cm�1 resolution, in thewavenumber
range of 979�2989 cm�1. To remove the environmental interferences
(water vapor together with CO2) and the possible instrumental drift
over time, every 10 h the instrument collected a background spectrum
that was automatically subtracted from each sample spectrum, yielding
the spectrum of the compounds being analyzed. Furthermore, since
water bands dominate the spectrum of liquid samples, prior to the
analysis of the musts and wines, a blank of distilled water was acquired
and the spectrum obtained also subtracted.

FT-MIR instruments allow one to achieve high levels of signal stability
and reproducibility over time, and it is not necessary to preprocess
spectral data, so we decided to work with raw spectral data.
Reference Analytical Measurements. Total phenolic com-

pounds (mg L�1 gallic acid), total anthocyanins (mg L�1 malvidin-3-
glucoside), and condensed tannins (mg L�1 catechin) were the oeno-
logical parameters used to monitor the phenolic extraction during
winemaking. These parameters were determined by UV�vis spectros-
copy as follows.

Analysis of Total Phenolic Compounds. The content of the total
phenolic compounds (TPC)was determinedonmusts/wines bymeasuring
the absorbance at 280 nm after dilution 1:50 with distilled water1 in a 1 cm
quartz cuvette. The quantification was carried out by the external standard
method using a calibration line built with gallic acid as the standard at
6 different concentrations in the range of 2.2�18.0 mg L�1.

Analysis of Total Anthocyanins. The content of the total antho-
cyanins (TA) was determined on musts/wines by measuring the
absorbance at 520 nm after dilution 1:25 with 0.1 M HCl to get
pH ∼1.0 in a 1 cm plastic cuvette.14 The quantification was carried
out by the external standard method using a calibration line built with
malvidin-3-glucoside as the standard at 6 different concentrations in
the range of 2.4�20.0 mg L�1.
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Analysis of Condensed Tannins. The content of the condensed
tannins (CT) was determined on musts/wines by the indirect method
of precipitation with methyl-cellulose precipitable (MCP),15 measuring
the absorbance at 280 nm in a 1 cm quartz cuvette. The quantification
was carried out by the external standard method using a calibration line
built with (+)-catechin as the standard at 6 different concentrations in
the range of 19.2 to 76.9 mg L�1.
Development and Validation of FT-MIR Models. The data

set was composed of a total of 600 samples, corresponding to musts/
wines from 60 vinifications (15 Merlot, 12 Syrah, 12 Tempranillo, 12
Cabernet sauvignon, and 9 Cari~nena) analyzed daily during 10 days of
skin-contact maceration.

First, a descriptive analysis of the data was performed by principal
components analysis (PCA). Then, quantitative analysis was per-
formed with partial least-squares (PLS) regression by relating the
sample spectra and the reference values.30 Before proceeding with the
PLS, the FT-MIR spectra data were automatically processed by mean
centering.

The whole data set was split using the Kennard�Stone algorithm,31

into a training set (NC = 400 samples), to build and validate the model,
and a test set (NT = 200 samples), to evaluate the prediction ability of
the model.

The Kennard-Stone algorithm proposed a sequential method that
should cover the experimental region uniformly. The procedure consists
of selecting the first two samples with the largest Euclidean distance for
the training set, considering the values of the spectral variables. Then,
from the rest of all possible samples, the one that is most distant from
those already selected was chosen, and it was included in the training set.
This selection process continued until the desired number of samples for
the training set was reached. The remaining samples in the data set are
used to create the validation set. The Kennard-Stone algorithm ensures

Table 1. Descriptive Statistics for Total Phenolic Compounds, Total Anthocyanins, and Condensed Tannins of Training and
Test Setsa

training set (samples = 400) test set (samples = 200)

phenolic parameter min max mean SD min max mean SD

TPC 250 1189 778 233 250 1172 746 252

TA 98 577 349 126 99 569 333 131

CT 80 742 389 152 91 761 388 150
aTPC, total phenolic compounds (mg gallic acid L�1); TA, total anthocyanins (mg malvidin-3-glucoside L�1); CT, condensed tannins (mg catechin L�1);
min, the minimum value; max, the maximum value; SD, standard deviation.

Table 2. Descriptive Statistics for the Total Phenolic
Compounds (TPC), Total Anthocyanins (TA), and
Condensed Tannins (CT) for Each Varietal Must/Winea

cultivar samples

phenolic

parameter min max mean SD

Syrah 120 TPC 391 1122 921 183

TA 238 566 461 74

CT 80 521 297 96

Merlot 150 TPC 378 1189 896 216

TA 192 577 444 93

CT 84 502 294 95

Tempranillo 120 TPC 278 1010 801 192

TA 119 384 300 57

CT 139 761 513 128

Cari~nena 90 TPC 250 582 476 89

TA 98 208 163 27

CT 100 664 440 143

Cabernet sauvignon 120 TPC 252 904 638 165

TA 99 377 282 70

CT 91 690 437 150
aTPC, total phenolic compounds (mg gallic acid L�1); TA, total
anthocyanins (mg malvidin-3-glucoside L�1); CT, condensed tannins
(mg catechin L�1); min, the minimum value; max, the maximum value;
SD, standard deviation.

Figure 1. FT-MIR spectra belonging to the fermentation of a must
sample daily monitored during the first 3 days. Main glucose peaks (V):
991, 1037, 1064, 1080, 1103, 1153, 2885, and 2935 cm�1. Main ethanol
peaks (v): 1045, 1083, 2904, and 2981 cm�1.

Figure 2. Loadings for the first three PC’s of the full-range (979�
2989 cm�1) spectral data.
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that the validation samples are in the experimental space of the training
set, minimizing the extrapolationwhen the validation samples are predicted.

A critical step in model building is the selection of the optimum
number of factors to ensure the prediction ability but also to avoid
overfitting. In this study, the number of factors was determined bymeans
of leave-one-out cross-validation32 considering the lowest root-mean-
square error of cross validation (RMSECV).33

Related to the calibration step, we evaluated the model fit to the data
with the root-mean-square error of calibration (RMSEC) expressed as a
percentage (RMSEC %),33 which can be defined as the mean error of
the model.

To test the predictive accuracy of the calibration models built, the
external test set was used to determine the root-mean-square error of
prediction (RMSEP) expressed as a percentage (RMSEP %).33

Additionally, to standardize the predictive accuracy, the residual
predictive deviation (RPD) was calculated for each model as the ratio
between the standard deviation (SD) of the TPC, TA, and CT values of
the validation samples (test set) and the RMSEP results.34 An RPD value
greater than 3.0 indicates a suitable calibration model for prediction
purposes.17,35

Estimation of the True Prediction Error. The reference values
used in the development of the models lead to an intrinsic associated
uncertainty, so they are obtained with a standard error. Therefore, the

validation of multivariate calibration models using these reference values
provides a systematic overestimation of the true prediction error, which
is the so-called apparent prediction error. To yield a more realistic
estimation of the true prediction error of the models, we used the simple
correction procedure proposed by Faber et al.36 (eq 1)

MSEPcor ¼ MSEPapp � σ̂2 ð1Þ

where MSEPcor is the bias-corrected MSEP, MSEPapp is the apparent
MSEP (i.e., the value obtained with the test set), and σ̂2 is the variance of
the measurement error in the reference values.

’RESULTS AND DISCUSSION

Reference Values.Table 1 summarizes the reference values of
the contents of the total phenolic compounds (TPC), total
anthocyanins (TA), and condensed tannins (CT) for both data
sets determined by using the reference analytical measurements.
As shown, a wide range of composition was covered due to the
changes that occurred during winemaking.
Table 2 summarizes the concentration of the phenolic com-

pounds evaluated considering each variety separately. It can be
seen, for example, that Cari~nena, which is characterized for its

Figure 3. Score plots (PC1�PC2) obtained by applying PCA to the FT-MIR spectra in the region 979�1477 cm�1 (A) when considering the cultivars
and (B) when considering the vinification stage.

Table 3. Analytical Performance Parameters of the Multivariate Calibration Models Built by PLS Regression Using Different
Spectral Regions of Musts/Winesa

dependent variable model region (cm�1) PLS factors RMSEC RMSEC (%) R2cal RMSEP RMSEP (%) R2val RMSEPcor (%) RPD

TPC full-range 979�2989 9 48.6 6.2 0.956 52.0 7.0 0.958 6.9 4.9

fingerprint 979�1477 10 39.2 5.0 0.972 42.4 5.7 0.972 5.6 6.0

main phenolic region 1133�1457 9 39.4 5.1 0.971 43.0 5.8 0.971 5.7 5.9

selected region 1168�1457 9 40.4 5.2 0.970 45.7 6.1 0.967 6.1 5.5

TA full-range 979�2989 10 31.9 9.1 0.936 39.2 11.8 0.912 11.8 3.3

fingerprint 979�1477 12 20.6 5.9 0.973 25.1 7.5 0.963 7.5 5.2

main phenolic region 1133�1457 9 25.1 7.2 0.960 28.6 8.6 0.952 8.6 4.6

selected region 1168�1457 9 25.0 7.2 0.960 29.4 8.8 0.950 8.8 4.5

CT full-range 979�2989 15 57.7 14.8 0.858 70.6 18.2 0.777 b 2.1

fingerprint 979�1477 13 64.0 16.4 0.822 66.9 17.4 0.799 b 2.2

main phenolic region 1133�1457 15 62.5 15.9 0.830 71.2 18.4 0.772 b 2.1

selected region 1168�1457 13 63.8 16.3 0.824 77.8 20.1 0.728 b 1.9
aRMSEC, root mean square error of calibration; R2cal, coefficient of determination of calibration; RMSEP, root mean square error of prediction;
R2val, coefficient of determination of validation; RMSEPcor, bias-corrected RMSEP; RPD, residual predictive deviation. TPC, total phenolic compounds
(mg gallic acid L�1); TA, total anthocyanins (mg malvidin-3-glucoside L�1); CT, condensed tannins (mg catechin L�1). b It was impossible to calculate
this value as the correction of the RMSEP % due to the negative values inside the square roots.
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low anthocyanic content, presented the lowest TA value, while
Merlot and Syrah varieties, which are known for their intense red
color, presented the highest TA values. The uncommon low TA
value found for a high colored variety such as Cabernet sauvignon
was due to the fact that the field zone where this variety grows is
very wet, and this high humidity makes a proper ripening process
difficult. However, as shown, Merlot and Syrah provided the
highest standard deviation (SD) values. This is because these
grape varieties are characterized for showing a progressive
accumulation of TPC and TA during long ripening periods.
Spectra of Musts and Wines. As expected, the dominating

absorption bands belonged to the major components of grape,

i.e, to organic acids, sugars, and also to ethanol generated during
the fermentation of sugars. All these bands masked the char-
acteristic IR vibrations of phenolic compounds.19,37�39

Moreover, it has to be pointed out that, since during the
fermentation the contents of these compounds changed, the
spectra obtained were different depending on the fermentation
stage (Figure 1). These differences could be observed mainly
in the 979�1477 cm�1 region where the bands were mainly
generated by the contribution of the C�O stretch belonging
to the primary alcohol of ethanol29,40 and also of the C�O
valence vibrations and C�O�C stretching vibrations belonging
to carbohydrates, including fructose and glucose.19,39,41,42

However, although in less extent, the differences can also be
detected in the 2800�2960 cm�1 region where the bands were
due to the C�H stretch of CH3 and CH2 from ethanol.29,40

However, since the first region containedmuchmore information
about the organic compounds, it was called the fingerprint region.
The negative absorption band at 1500�1740 cm�1, assigned

to water, was due to the automatic subtraction of the aqueous
blank absorbance that the instrument carried out prior to the
sample analysis.37 The peak at 2341 cm�1 corresponds to the
CO2 released during fermentation. The water and CO2 absorp-
tion regions do not contain useful information, so they are
isolated from the spectral data for calibrating purposes.
Because of the great number of absorption bands obtained, it

was not easy to find the spectral regions associated with the
absorptions of phenolic compounds. However, there are some
studies related to the identification of the spectral regions for
the wine tannins,27 and we also carried out some studies with the
spectra from grape extracts enriched with different phenolics of
different chemical structure in a previous study.33 These studies
revealed that, when dealing with phenolic compounds, the best
spectral regions for calibration purposes ranged from 1168 to
1457 cm�1 or from 1133 to 1457 cm�1.
Principal Components Analysis (PCA).We applied a PCA to

the full range (979�2989 cm�1) spectral data set. The results
showed that three principal components (PC’s) explained the
99.68% of the spectral variation of the samples (first PC 96.78%;
second PC 2.41%; and third PC 0.50%).
Figure 2 shows the loadings for the first three PCs, that is, the

influence of each wavelength on the variance along this region.
The main regions with the highest influence on the spectral
variance coincided with the regions where the signal is higher:
979�1477 cm�1 and 1500�1740 cm�1. However, since the
latest bands were due to water absorption, we could conclude
that the region 979�1477 cm�1 contained almost all the informa-
tion that characterizes the samples. Indeed, a PCA analysis using
this region showed that the first PC explained the 98.76% of
variance and that the first three PCs explained the 99.98%.
Moreover, when examining the score plots in the area defined

by the first two principal components, it was observed that the
samples did not form clusters or groups, but they were distrib-
uted all along the space (Figure 3A,B), so global models with
total calibration samples could be built. Therefore, we could
check that the fingerprint region was very useful for calibration
purposes.
Quantitative Analysis: PLS Models. The PLS regression

method was used to build four different multivariate calibration
models between the FT-MIR spectra (using different wavenum-
ber ranges selections) and the reference values of the TPC, TA,
and CT phenolic concentrations, respectively. The four different
wavenumber range selections corresponded to the full spectrum

Figure 4. Correlation plot for the prediction of (A) total phenolic
compounds (expressed as mg L�1 of gallic acid), (B) total anthocyanins
(expressed as mg L�1 of malvidin-3-glucoside), and (C) condensed
tannins (expressed as mg L�1 of catechin) using the model for the
selected region (979�1477 cm�1).
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(979�2989 cm�1), the fingerprint region (979�1477 cm�1),
and the two regions revealed by the previous enrichment
experiment:33 1133�1457 cm�1 (called the main phenolic region)
and 1168�1457 cm�1 (called the selected region). The results of
each model are reported in Table 3, and an example of the
prediction correlation plots obtained when using the fingerprint
region is shown in Figure 4.
TPC Quantification. Among the different models, the ones

developed when using the fingerprint and the main phenolic
regions presented the best TPC prediction results with highest
values of R2val (0.972 and 0.971) and RPD (6.0 and 5.9) and also
with lowest RMSEP % values (5.7% and 5.8%), respectively.
However, the number of factors to describe the spectral variance
when working with the main phenolic region was slightly lower.
All these results indicated that when some bands inside MIR
spectra were selected more satisfactory prediction results were
obtained than when the full spectrum region was used.Moreover,
all the models obtained in this study presented lower prediction
error values than the ones provided by other researchers on the
quantification of total phenolic compounds in red wine fermen-
tations by MIR spectroscopy.29

To verify the absence of bias between the reference values and
the predicted values calculated by each model, we proceed with
the joint confidence region test. We concluded that the results of
the four FT-MIR models were unbiased because the slope and
intercept of the four regression lines were not significantly
different (with a significance level of 0.05) from1 and0, respectively.
TA Quantification. After applying the joint confidence region

test to the data of this parameter, we detected a significant bias
when using the full range of spectrum. Indeed the models
obtained working in this region presented the lowest R2val
(0.912) and RPD (3.3) values and the highest RMSEP %
(11.8%). On the contrary, the model developed using the
fingerprint region showed the highest R2val (0.963) and RPD
(5.2) and the lowest RMSEP (7.5%). The models built with the
other two regions considered also provided satisfactory predic-
tion results, with R2val = 0.952 and 0.950, RPD = 4.6 and 4.5, and
RMSEP % = 8.6% and 8.8%, respectively.

In comparison with those obtained for the TPC results, the
RMSEP values obtained for TA predictions were higher. This
different behavior could be due to the chemical similarity of
anthocyanins with other phenolic compounds, which makes it
difficult to find their total relevant spectral region. However,
whatever the region selected, whereas for TA the RMSEPcor
values obtained were equal to the RMSEP, these values are
slightly different for TPC. This different trend is due to the fact
that the reference method to quantify TA is more precise and
presents a lower standard deviation. In any case, because all the
models obtained for both parameters provided RMSEPcor lower
than 10%, we considered that the uncertainty values are suitable
for predictive purposes.
CT Quantification. The calibration models obtained for CT

were the least robust of all. In fact, already in the joint confidence
test, we checked that the four models were significantly biased, so
they did not provide comparable results with the reference
values. Moreover, the models obtained showed higher values
of RMSEP % than those for TPC and TA parameters whatever
the spectral region selected, so the predictive ability was not good
enough even when we considered the best model, which was
obtained with the fingerprint region. This was mainly attributed
to the high relative standard deviation (>20%) of the chosen
reference analytical method. This lack of accuracy of the refer-
ence method can be explained because it is an indirect quantifica-
tion method and also because wine tannins are structurally very
complex and diverse, which implies a poorly repetitive interac-
tion with the methyl cellulose. Therefore, in future studies the
reference method should be replaced.
Models for Individual Cultivars. Separate calibrations for

each cultivar and spectral region were performed and the models
cross-validated to evaluate the predictive ability of the calibration
equations. Table 4 shows the models built with the spectral
regions that provided the best results for each phenolic para-
meter and, as can be seen, every variety follows a specific trend.
In comparison with those of the global calibrations, these

models showed better RMSEC% values, mainly for TPC and TA
(lower than 5.0%). Moreover, less PLS factors were required,

Table 4. Results of PLS Models for Phenolic Compounds in Varietal Musts/Wines Using the Best Calibration Regionsa

cultivar dependent variable samples region (cm�1) PLS factors RMSEC RMSEC (%) R2cal RMSECV (%) R2val RPD

Merlot TPC 150 1133�1457 3 27.8 3.1 0.983 3.2 0.982 7.6

TA 150 1060�1457 6 19.5 4.4 0.956 4.8 0.946 4.3

CT 143 1060�1457 12 42.3 14.5 0.799 17.3 0.715 1.9

Tempranillo TPC 120 1168�1457 6 26.8 3.3 0.980 3.7 0.975 6.4

TA 120 1133�1457 8 11.8 3.9 0.957 4.4 0.946 4.3

CT 120 979�1477 9 41.6 8.1 0.893 9.6 0.850 2.6

Syrah TPC 120 979�1477 5 24.3 2.6 0.982 2.8 0.980 7.0

TA 120 1060�1457 7 16.0 3.5 0.953 3.9 0.941 4.1

CT 114 1133�1457 11 40.2 13.4 0.815 16.3 0.730 1.9

Cari~nena TPC 90 1168�1457 4 15.5 3.2 0.970 3.7 0.961 5.1

TA 90 1168�1457 9 6.0 3.7 0.951 4.5 0.927 3.7

CT 90 979�1477 9 44.0 10.0 0.905 12.5 0.852 2.6

Cabernet sauvignon TPC 118 1133�1457 2 22.4 3.5 0.981 3.6 0.980 7.1

TA 117 1133�1457 6 11.2 4.0 0.973 4.4 0.966 5.4

CT 120 1133�1457 6 45.4 10.4 0.908 11.4 0.889 3.0
aRMSEC, root mean square error of calibration; R2cal, coefficient of determination of calibration; RMSECV, root mean square error of cross-validation;
R2val, coefficient of determination of validation; RPD, residual predictive deviation. TPC, total phenolic compounds (mg gallic acid L�1); TA, total
anthocyanins (mg malvidin-3-glucoside L�1); CT, condensed tannins (mg catechin L�1).
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which is what is in accordance with the results obtained by other
researchers.29

From all the results presented, we conclude that the FT-MIR
spectrometry combined with multivariate calibration enables an
easy and reliable measurement of the content of phenolic com-
pounds at the same time, regardless of the stage of skin-contact
maceration. Indeed, although the sample matrixes were constantly
change during winemaking, the phenolic compounds studied can
be well predicted avoiding sample preparation or spectral pre-
treatment. This implies a very short analytical time, so the
methodology proposed becomes an invaluable tool when a large
number of samples have to be analyzed.
This allows one to determine the suitability of a grape to get a

specific style of wine because the quick establishment of the
extraction ending moment can prevent negative sensory attri-
butes in red wines.
Moreover, the FT-MIR instruments could be applied to predict

phenolic compounds on specific cultivars. This would allow one
to design specific models to fulfill each winery's requirements.
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